Chap3 Local Probabilistic Models

2019/05/26

Local Probabilistic Model

Conditional Probability Distributions (CPDs)

The Basic Structures in BNs

回顾基于 G 的概率分解

所需要的表达项是 local conditional probability distributions(CPDs) encoded by the target variable given its parents

Discrete CPDs

Tabular CPDs

对于(Y|X1, X2, …, Xk) 有 个独立参数。参数是关于父亲个数呈指数级增长的

Rule CPDs

即把 Tabular CPDs 相同项合并起来。

Tree CPDs 可以直接转化为 rule CPD

Independence of causal influence

“Causal”|“Associative”

Continuous CPDs

Logistic CPDs

这个其实就是 NN 了,X1…Xk 是输入节点,Y 是 hidden layer 中的一个点,sigmoid是 activation function

Log-odds:

更大的 odds 表示更有可能导致 positive result

如果 log-odds 中的二元变量 Xj 改变

代表有 positive contribution

Generalized Linear Models

  • Linear Gaussian
  • Binomial distribution (Logistic CPD)
  • Poisson distribution

A few CPDs in neural networks

ReLu: Rectified Linear Units

Rectifier:

Softplus:

Bayesian networks representation examples

Post Directory